阻塞队列

概念

队列

队列就可以想成是一个数组,从一头进入,一头出去,排队买饭

阻塞队列

BlockingQueue 阻塞队列,排队拥堵,首先它是一个队列,而一个阻塞队列在数据结构中所起的作用大致如下图所示:

image-20200316152120272

线程1往阻塞队列中添加元素,而线程2从阻塞队列中移除元素

  • 当阻塞队列是空时,从队列中获取元素的操作将会被阻塞
    • 当蛋糕店的柜子空的时候,无法从柜子里面获取蛋糕
  • 当阻塞队列是满时,从队列中添加元素的操作将会被阻塞
    • 当蛋糕店的柜子满的时候,无法继续向柜子里面添加蛋糕了

也就是说 试图从空的阻塞队列中获取元素的线程将会被阻塞,直到其它线程往空的队列插入新的元素

同理,试图往已经满的阻塞队列中添加新元素的线程,直到其它线程往满的队列中移除一个或多个元素,或者完全清空队列后,使队列重新变得空闲起来,并后续新增

为什么要用?

去海底捞吃饭,大厅满了,需要进候厅等待,但是这些等待的客户能够对商家带来利润,因此我们非常欢迎他们阻塞

在多线程领域:所谓的阻塞,在某些清空下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动唤醒

为什么需要BlockingQueue

好处是我们不需要关心什么时候需要阻塞线程,什么时候需要唤醒线程,因为这一切BlockingQueue都帮你一手包办了

在concurrent包发布以前,在多线程环境下,我们每个程序员都必须自己取控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。

架构

// 你用过List集合类

// ArrayList集合类熟悉么?

// 还用过 CopyOnWriteList  和 BlockingQueue

BlockingQueue阻塞队列是属于一个接口,底下有七个实现类:

  • ArrayBlockQueue:由数组结构组成的有界阻塞队列
  • LinkedBlockingQueue:由链表结构组成的有界(但是默认大小 Integer.MAX_VALUE)的阻塞队列
    • 有界,但是界限非常大,相当于无界,可以当成无界
  • PriorityBlockQueue:支持优先级排序的无界阻塞队列
  • DelayQueue:使用优先级队列实现的延迟无界阻塞队列
  • SynchronousQueue:不存储元素的阻塞队列,也即单个元素的队列
    • 生产一个,消费一个,不存储元素,不消费不生产
  • LinkedTransferQueue:由链表结构组成的无界阻塞队列
  • LinkedBlockingDeque:由链表结构组成的双向阻塞队列

这里需要掌握的是:ArrayBlockQueue、LinkedBlockingQueue、SynchronousQueue

BlockingQueue核心方法

⚠️ 检查:查看队列空不空,并且返回队首元素

image-20200316154442756

抛出异常 当阻塞队列满时:在往队列中add插入元素会抛出 IIIegalStateException:Queue full 当阻塞队列空时:再往队列中remove移除元素,会抛出NoSuchException
特殊性 插入方法,成功true,失败false 移除方法:成功返回出队列元素,队列没有就返回空
一直阻塞 当阻塞队列满时,生产者继续往队列里put元素,队列会一直阻塞生产线程直到put数据or响应中断退出, 当阻塞队列空时,消费者线程试图从队列里take元素,队列会一直阻塞消费者线程直到队列可用。
超时退出 当阻塞队列满时,队里会阻塞生产者线程一定时间,超过限时后生产者线程会退出

抛出异常组

但执行add方法,向已经满的ArrayBlockingQueue中添加元素时候,会抛出异常

// 阻塞队列,需要填入默认值
BlockingQueue<String> blockingQueue = new ArrayBlockingQueue<>(3);

System.out.println(blockingQueue.add("a"));
System.out.println(blockingQueue.add("b"));
System.out.println(blockingQueue.add("c"));

System.out.println(blockingQueue.add("XXX"));

运行后:

true
true
true
Exception in thread "main" java.lang.IllegalStateException: Queue full
	at java.util.AbstractQueue.add(AbstractQueue.java:98)
	at java.util.concurrent.ArrayBlockingQueue.add(ArrayBlockingQueue.java:312)
	at com.moxi.interview.study.queue.BlockingQueueDemo.main(BlockingQueueDemo.java:25)

同时如果我们多取出元素的时候,也会抛出异常,我们假设只存储了3个值,但是取的时候,取了四次

// 阻塞队列,需要填入默认值
BlockingQueue<String> blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.add("a"));
System.out.println(blockingQueue.add("b"));
System.out.println(blockingQueue.add("c"));

System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());

那么出现异常

true
true
true
a
b
c
Exception in thread "main" java.util.NoSuchElementException
	at java.util.AbstractQueue.remove(AbstractQueue.java:117)
	at com.moxi.interview.study.queue.BlockingQueueDemo.main(BlockingQueueDemo.java:30)

布尔类型组

我们使用 offer的方法,添加元素时候,如果阻塞队列满了后,会返回false,否者返回true

同时在取的时候,如果队列已空,那么会返回null

BlockingQueue blockingQueue = new ArrayBlockingQueue(3);

System.out.println(blockingQueue.offer("a"));
System.out.println(blockingQueue.offer("b"));
System.out.println(blockingQueue.offer("c"));
System.out.println(blockingQueue.offer("d"));

System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());

运行结果

true
true
true
false
a
b
c
null

阻塞队列组

我们使用 put的方法,添加元素时候,如果阻塞队列满了后,添加消息的线程,会一直阻塞,直到队列元素减少,会被清空,才会唤醒

一般在消息中间件,比如RabbitMQ中会使用到,因为需要保证消息百分百不丢失,因此只有让它阻塞

BlockingQueue<String> blockingQueue = new ArrayBlockingQueue<>(3);
blockingQueue.put("a");
blockingQueue.put("b");
blockingQueue.put("c");
System.out.println("================");

blockingQueue.take();
blockingQueue.take();
blockingQueue.take();
blockingQueue.take();

同时使用take取消息的时候,如果内容不存在的时候,也会被阻塞

不见不散组

offer( ) , poll 加时间

使用offer插入的时候,需要指定时间,如果2秒还没有插入,那么就放弃插入

BlockingQueue<String> blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.offer("a", 2L, TimeUnit.SECONDS));
System.out.println(blockingQueue.offer("b", 2L, TimeUnit.SECONDS));
System.out.println(blockingQueue.offer("c", 2L, TimeUnit.SECONDS));
System.out.println(blockingQueue.offer("d", 2L, TimeUnit.SECONDS));

同时取的时候也进行判断

System.out.println(blockingQueue.poll(2L, TimeUnit.SECONDS));
System.out.println(blockingQueue.poll(2L, TimeUnit.SECONDS));
System.out.println(blockingQueue.poll(2L, TimeUnit.SECONDS));
System.out.println(blockingQueue.poll(2L, TimeUnit.SECONDS));

如果2秒内取不出来,那么就返回null

SynchronousQueue

SynchronousQueue没有容量,与其他BlockingQueue不同,SynchronousQueue是一个不存储的BlockingQueue(0库存),每一个put操作必须等待一个take操作,否者不能继续添加元素

下面我们测试SynchronousQueue添加元素的过程

首先我们创建了两个线程,一个线程用于生产,一个线程用于消费

生产的线程分别put了 A、B、C这三个字段

BlockingQueue<String> blockingQueue = new SynchronousQueue<>();

new Thread(() -> {
    try {       
        System.out.println(Thread.currentThread().getName() + "\t put A ");
        blockingQueue.put("A");
       
        System.out.println(Thread.currentThread().getName() + "\t put B ");
        blockingQueue.put("B");        
        
        System.out.println(Thread.currentThread().getName() + "\t put C ");
        blockingQueue.put("C");        
        
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}, "t1").start();

消费线程使用take,消费阻塞队列中的内容,并且每次消费前,都等待5秒

new Thread(() -> {
  try {

    try {
      TimeUnit.SECONDS.sleep(5);
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
    blockingQueue.take();
    System.out.println(Thread.currentThread().getName() + "\t take A ");

    try {
      TimeUnit.SECONDS.sleep(5);
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
    blockingQueue.take();
    System.out.println(Thread.currentThread().getName() + "\t take B ");

    try {
      TimeUnit.SECONDS.sleep(5);
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
    blockingQueue.take();
    System.out.println(Thread.currentThread().getName() + "\t take C ");

  } catch (InterruptedException e) {
    e.printStackTrace();
  }
}, "t2").start();

最后结果输出为:

t1	 put A 
t2	 take A 

5秒后...

t1	 put B 
t2	 take B 

5秒后...

t1	 put C 
t2	 take C 

我们从最后的运行结果可以看出,每次t1线程向队列中添加阻塞队列添加元素后,t1输入线程就会等待 t2消费线程,t2消费后,t2处于挂起状态,等待t1在存入,从而周而复始,形成存一取一的状态

阻塞队列的用处

生产者消费者模式

一个初始值为0的变量,两个线程对其交替操作,一个加1,一个减1,来5轮

关于多线程的操作,我们需要记住下面几句

  • 线程 操作(方法) 资源类
  • 判断(while) 干活 通知
  • 防止虚假唤醒机制

我们下面实现一个简单的生产者消费者模式,首先有资源类ShareData

/**
 * 资源类
 */
class ShareData {

    private int number = 0;

    private Lock lock = new ReentrantLock();

    private Condition condition = lock.newCondition();

    public void increment() throws Exception{
        // 同步代码块,加锁
        lock.lock();
        try {
            // 判断
            while(number != 0) {
                // 等待不能生产
                condition.await();
            }

            // 干活
            number++;

            System.out.println(Thread.currentThread().getName() + "\t " + number);

            // 通知 唤醒
            condition.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void decrement() throws Exception{
        // 同步代码块,加锁
        lock.lock();
        try {
            // 判断
            while(number == 0) {
                // 等待不能消费
                condition.await();
            }

            // 干活
            number--;

            System.out.println(Thread.currentThread().getName() + "\t " + number);

            // 通知 唤醒
            condition.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

}

里面有一个number变量,同时提供了increment 和 decrement的方法,分别让number 加1和减1

⚠️ 但是我们在进行判断的时候,为了防止出现虚假唤醒机制,不能使用if来进行判断,而应该使用while

// 判断
while(number != 0) {
    // 等待不能生产
    condition.await();
}

不能使用 if判断

// 判断
if(number != 0) {
    // 等待不能生产
    condition.await();
}

完整代码

/**
 * 生产者消费者 传统版
 * 题目:一个初始值为0的变量,两个线程对其交替操作,一个加1,一个减1,来5轮
 */
/**
 * 线程 操作 资源类
 * 判断 干活 通知
 * 防止虚假唤醒机制
 */

/**
 * 资源类
 */
class ShareData {

    private int number = 0;

    private Lock lock = new ReentrantLock();

    private Condition condition = lock.newCondition();

    public void increment() throws Exception{
        // 同步代码块,加锁
        lock.lock();
        try {
            // 判断
            while(number != 0) {
                // 等待不能生产
                condition.await();
            }

            // 干活
            number++;

            System.out.println(Thread.currentThread().getName() + "\t " + number);

            // 通知 唤醒
            condition.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void decrement() throws Exception{
        // 同步代码块,加锁
        lock.lock();
        try {
            // 判断
            while(number == 0) {
                // 等待不能消费
                condition.await();
            }

            // 干活
            number--;

            System.out.println(Thread.currentThread().getName() + "\t " + number);

            // 通知 唤醒
            condition.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

}
public class ProdConsumerTraditionDemo {

    public static void main(String[] args) {

        // 高内聚,低耦合    内聚指的是,一个空调,自身带有调节温度高低的方法

        ShareData shareData = new ShareData();

        // t1线程,生产
        new Thread(() -> {
            for (int i = 0; i < 5; i++) {
                try {
                    shareData.increment();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }, "t1").start();

        // t2线程,消费
        new Thread(() -> {
            for (int i = 0; i < 5; i++) {
                try {
                    shareData.decrement();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }, "t2").start();
    }
}

最后运行成功后,我们一个进行生产,一个进行消费

t1	 1
t2	 0
t1	 1
t2	 0
t1	 1
t2	 0
t1	 1
t2	 0
t1	 1
t2	 0

生成者和消费者3.0

在concurrent包发布以前,在多线程环境下,我们每个程序员都必须自己去控制这些细节,尤其还要兼顾效率和线程安全,则这会给我们的程序带来不小的时间复杂度

现在我们使用新版的阻塞队列版生产者和消费者,使用:volatile、CAS、atomicInteger、BlockQueue、线程交互、原子引用

/**
 * 生产者消费者  阻塞队列版
 * 使用:volatile、CAS、atomicInteger、BlockQueue、线程交互、原子引用
 */

class MyResource {
    // 默认开启,进行生产消费
    // 这里用到了volatile是为了保持数据的可见性,也就是当TLAG修改时,要马上通知其它线程进行修改
    private volatile boolean FLAG = true;

    // 使用原子包装类,而不用number++
    private AtomicInteger atomicInteger = new AtomicInteger();

    // 这里不能为了满足条件,而实例化一个具体的SynchronousBlockingQueue
    BlockingQueue<String> blockingQueue = null;

    // 而应该采用依赖注入里面的,构造注入方法传入
    public MyResource(BlockingQueue<String> blockingQueue) {
        this.blockingQueue = blockingQueue;
        // 查询出传入的class是什么
        System.out.println(blockingQueue.getClass().getName());
    }

    /**
     * 生产
     * @throws Exception
     */
    public void myProd() throws Exception{
        String data = null;
        boolean retValue;
        // 多线程环境的判断,一定要使用while进行,防止出现虚假唤醒
        // 当FLAG为true的时候,开始生产
        while(FLAG) {
            data = atomicInteger.incrementAndGet() + "";

            // 2秒存入1个data
            retValue = blockingQueue.offer(data, 2L, TimeUnit.SECONDS);
            if(retValue) {
                System.out.println(Thread.currentThread().getName() + "\t 插入队列:" + data  + "成功" );
            } else {
                System.out.println(Thread.currentThread().getName() + "\t 插入队列:" + data  + "失败" );
            }

            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        System.out.println(Thread.currentThread().getName() + "\t 停止生产,表示FLAG=false,生产结束");
    }

    /**
     * 消费
     * @throws Exception
     */
    public void myConsumer() throws Exception{
        String retValue;
        // 多线程环境的判断,一定要使用while进行,防止出现虚假唤醒
        // 当FLAG为true的时候,开始生产
        while(FLAG) {
            // 2秒存入1个data
            retValue = blockingQueue.poll(2L, TimeUnit.SECONDS);
            if(retValue != null && retValue != "") {
                System.out.println(Thread.currentThread().getName() + "\t 消费队列:" + retValue  + "成功" );
            } else {
                FLAG = false;
                System.out.println(Thread.currentThread().getName() + "\t 消费失败,队列中已为空,退出" );

                // 退出消费队列
                return;
            }
        }
    }

    /**
     * 停止生产的判断
     */
    public void stop() {
        this.FLAG = false;
    }

}
public class ProdConsumerBlockingQueueDemo {

    public static void main(String[] args) {
        // 传入具体的实现类, ArrayBlockingQueue
        MyResource myResource = new MyResource(new ArrayBlockingQueue<String>(10));

        new Thread(() -> {
            System.out.println(Thread.currentThread().getName() + "\t 生产线程启动");
            System.out.println("");
            System.out.println("");
            try {
                myResource.myProd();
                System.out.println("");
                System.out.println("");
            } catch (Exception e) {
                e.printStackTrace();
            }
        }, "prod").start();


        new Thread(() -> {
            System.out.println(Thread.currentThread().getName() + "\t 消费线程启动");

            try {
                myResource.myConsumer();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }, "consumer").start();

        // 5秒后,停止生产和消费
        try {
            TimeUnit.SECONDS.sleep(5);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        System.out.println("");
        System.out.println("");
        System.out.println("5秒中后,生产和消费线程停止,线程结束");
        myResource.stop();
    }
}

最后运行结果

java.util.concurrent.ArrayBlockingQueue
prod	 生产线程启动


consumer	 消费线程启动
prod	 插入队列:1成功
consumer	 消费队列:1成功
prod	 插入队列:2成功
consumer	 消费队列:2成功
prod	 插入队列:3成功
consumer	 消费队列:3成功
prod	 插入队列:4成功
consumer	 消费队列:4成功
prod	 插入队列:5成功
consumer	 消费队列:5成功


5秒中后生产和消费线程停止线程结束
prod	 停止生产表示FLAG=false生产介绍

线程池(Java中有哪些方法获取多线程)

前言

获取多线程的方法,我们都知道有三种,还有一种是实现Callable接口

  • 实现Runnable接口
  • 实现Callable接口
  • 实例化Thread类
  • 使用线程池获取

Callable接口

Callable接口,是一种让线程执行完成后,能够返回结果的

在说到Callable接口的时候,我们不得不提到Runnable接口

/**
 * 实现Runnable接口
 */
class MyThread implements Runnable {

    @Override
    public void run() {

    }
}

我们知道,实现Runnable接口的时候,需要重写run方法,也就是线程在启动的时候,会自动调用的方法

同理,我们实现Callable接口,也需要实现call方法,但是这个时候我们还需要有返回值,这个Callable接口的应用场景一般就在于批处理业务,比如转账的时候,需要给一会返回结果的状态码回来,代表本次操作成功还是失败

/**
 * Callable有返回值
 * 批量处理的时候,需要带返回值的接口(例如支付失败的时候,需要返回错误状态)
 *
 */
class MyThread2 implements Callable<Integer> {

    @Override
    public Integer call() throws Exception {
        System.out.println("come in Callable");
        return 1024;
    }
}

最后我们需要做的就是通过Thread线程, 将MyThread2实现Callable接口的类包装起来

⭐️ 这里需要用到的是FutureTask类,他实现了Runnable接口,并且还需要传递一个实现Callable接口的类作为构造函数

// FutureTask:实现了Runnable接口,构造函数又需要传入 Callable接口
// 这里通过了FutureTask接触了Callable接口
FutureTask<Integer> futureTask = new FutureTask<>(new MyThread2());

然后在用Thread进行实例化,传入实现Runnabnle接口的FutureTask的类

Thread t1 = new Thread(futureTask, "aaa");
t1.start();

最后通过 futureTask.get() 获取到返回值

// 输出FutureTask的返回值
System.out.println("result FutureTask " + futureTask.get());

这就相当于原来我们的方式是main方法一条龙之心,后面在引入Callable后,对于执行比较久的线程,可以单独新开一个线程进行执行,最后在进行汇总输出

为什么会出现Callable接口

为了 并发和异步 !

最后需要注意的是: 要求获得Callable线程的计算结果,如果没有计算完成就要去强求,会导致阻塞,直到计算完成

image-20200317152541284

也就是说 futureTask.get() 需要放在最后执行,这样不会导致主线程阻塞

也可以使用下面算法,使用类似于自旋锁的方式来进行判断是否运行完毕

// 判断futureTask是否计算完成
while(!futureTask.isDone()) {

}

任务多次计算问题

多个线程执行 一个FutureTask的时候,只会计算一次

FutureTask<Integer> futureTask = new FutureTask<>(new MyThread2());

// 开启两个线程计算futureTask
new Thread(futureTask, "AAA").start();
new Thread(futureTask, "BBB").start();

如果我们要两个线程同时计算任务的话,那么需要这样写,需要定义两个futureTask

FutureTask<Integer> futureTask = new FutureTask<>(new MyThread2());
FutureTask<Integer> futureTask2 = new FutureTask<>(new MyThread2());

// 开启两个线程计算futureTask
new Thread(futureTask, "AAA").start();

new Thread(futureTask2, "BBB").start();

ThreadPoolExecutor

为什么用线程池

线程池做的主要工作就是控制运行的线程的数量,处理过程中,将任务放入到队列中,然后线程创建后,启动这些任务,如果线程数量超过了最大数量的线程排队等候,等其它线程执行完毕,再从队列中取出任务来执行。

它的主要特点为:线程复用、控制最大并发数、管理线程

线程池中的任务是放入到阻塞队列中的

线程池的好处

多核处理的好处是:省略的上下文的切换开销

原来我们实例化对象的时候,是使用 new关键字进行创建,到了Spring后,我们学了IOC依赖注入,发现Spring帮我们将对象已经加载到了Spring容器中,只需要通过@Autowrite注解,就能够自动注入,从而使用

因此使用多线程有下列的好处

  • 降低资源消耗。通过重复利用已创建的线程,降低线程创建和销毁造成的消耗
  • 提高响应速度。当任务到达时,任务可以不需要等到线程创建就立即执行
  • 提高线程的可管理性。线程是稀缺资源,如果无线创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控

架构说明

Java中线程池是通过Executor框架实现的,该框架中用到了Executor,Executors(代表工具类),ExecutorService,ThreadPoolExecutor这几个类。

image-20200317175202647

image-20200317175241007

创建线程池

  • Executors.newFixedThreadPool(int i) :创建一个拥有 i 个线程的线程池
    • 执行长期的任务,性能好很多
    • 创建一个定长线程池,可控制线程数最大并发数,超出的线程会在队列中等待
  • Executors.newSingleThreadExecutor:创建一个只有1个线程的 单线程池
    • 一个任务一个任务执行的场景
    • 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序执行
  • Executors.newCacheThreadPool(); 创建一个可扩容的线程池
    • 执行很多短期异步的小程序或者负载教轻的服务器
    • 创建一个可缓存线程池,如果线程长度超过处理需要,可灵活回收空闲线程,如无可回收,则新建新线程

具体使用,首先我们需要使用Executors工具类,进行创建线程池,这里创建了一个拥有5个线程的线程池

// 一池5个处理线程(用池化技术,一定要记得关闭)
ExecutorService threadPool = Executors.newFixedThreadPool(5);

// 创建一个只有一个线程的线程池
ExecutorService threadPool = Executors.newSingleThreadExecutor();

// 创建一个拥有N个线程的线程池,根据调度创建合适的线程
ExecutorService threadPool = Executors.newCacheThreadPool();

然后我们执行下面的的应用场景

模拟10个用户来办理业务每个用户就是一个来自外部请求线程

我们需要使用 threadPool.execute执行业务,execute需要传入一个实现了Runnable接口的线程

threadPool.execute(() -> {
	System.out.println(Thread.currentThread().getName() + "\t 给用户办理业务");
});

然后我们使用完毕后关闭线程池

threadPool.shutdown();

完整代码为:

/**
 * 第四种获取 / 使用 Java多线程的方式,通过线程池
 */
public class MyThreadPoolDemo {
    public static void main(String[] args) {

        // Array  Arrays(辅助工具类)
        // Collection Collections(辅助工具类)
        // Executor Executors(辅助工具类)


        // 一池5个处理线程(用池化技术,一定要记得关闭)
        ExecutorService threadPool = Executors.newFixedThreadPool(5);

        // 模拟10个用户来办理业务,每个用户就是一个来自外部请求线程
        try {

            // 循环十次,模拟业务办理,让5个线程处理这10个请求
            for (int i = 0; i < 10; i++) {
                final int tempInt = i;
                threadPool.execute(() -> {
                    System.out.println(Thread.currentThread().getName() + "\t 给用户:" + tempInt + " 办理业务");
                });
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            threadPool.shutdown();
        }

    }
}

最后结果:

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-5	 给用户:4 办理业务
pool-1-thread-1	 给用户:5 办理业务
pool-1-thread-4	 给用户:3 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-3	 给用户:2 办理业务
pool-1-thread-2	 给用户:9 办理业务
pool-1-thread-4	 给用户:8 办理业务
pool-1-thread-1	 给用户:7 办理业务
pool-1-thread-5	 给用户:6 办理业务

我们能够看到,一共有5个线程,在给10个用户办理业务

底层实现 🤔

我们通过查看源码,点击了Executors.newSingleThreadExecutor 和 Executors.newFixedThreadPool能够发现底层都是使用了ThreadPoolExecutor

image-20200317182004293

我们可以看到线程池的内部,还使用到了LinkedBlockingQueue 链表阻塞队列

⚠️ 同时在查看Executors.newCacheThreadPool 看到底层用的是 SynchronousBlockingQueue阻塞队列

最后查看一下,完整的三个创建线程的方法

image-20200317183202992

线程池的重要参数

image-20200317183600957

线程池在创建的时候,一共有7大参数

  • corePoolSize:核心线程数,线程池中的常驻核心线程数
    • 在创建线程池后,当有请求任务来之后,就会安排池中的线程去执行请求任务,近似理解为今日当值线程
    • 当线程池中的线程数目达到corePoolSize后,就会把到达的队列放到缓存队列中
  • maximumPoolSize:线程池能够容纳同时执行的最大线程数,此值必须大于等于1
    • 相当有扩容后的线程数,这个线程池能容纳的最多线程数
  • keepAliveTime:多余的空闲线程存活时间
    • 当线程池数量超过corePoolSize时,当空闲时间达到keepAliveTime值时,多余的空闲线程会被销毁,直到只剩下corePoolSize个线程为止
    • 默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用
  • unit:keepAliveTime的单位
  • workQueue:任务队列,被提交的但未被执行的任务(类似于银行里面的候客区)
    • LinkedBlockingQueue:链表阻塞队列
    • SynchronousBlockingQueue:同步阻塞队列
  • threadFactory:表示生成线程池中工作线程的线程工厂,用于创建线程池 一般用默认即可
  • handler:拒绝策略,表示当队列满了并且工作线程大于线程池的最大线程数(maximumPoolSize3)时,如何来拒绝请求执行的Runnable的策略

当营业窗口和阻塞队列中都满了时候,就需要设置拒绝策略

image-20200317201150197

线程池底层工作原理

线程池运行架构图

image-20200318154414717

文字说明

  1. 在创建了线程池后,等待提交过来的任务请求

  2. 当调用execute()方法添加一个请求任务时,线程池会做出如下判断

    1. 如果正在运行的线程池数量小于corePoolSize,那么马上创建线程运行这个任务
    2. 如果正在运行的线程数量大于或等于corePoolSize,那么将这个任务放入队列
    3. 如果这时候队列满了,并且正在运行的线程数量还小于maximumPoolSize,那么还是创建非核心线程like运行这个任务;
    4. 如果队列满了并且正在运行的线程数量大于或等于maximumPoolSize,那么线程池会启动饱和拒绝策略来执行
  3. 当一个线程完成任务时,它会从队列中取下一个任务来执行

  4. 当一个线程无事可做操作一定的时间(keepAliveTime)时,线程池会判断:

    1. 如果当前运行的线程数大于corePoolSize,那么这个线程就被停掉
    2. 所以线程池的所有任务完成后,它会最终收缩到corePoolSize的大小

以顾客去银行办理业务为例,谈谈线程池的底层工作原理

  1. 最开始假设来了两个顾客,因为corePoolSize为2,因此这两个顾客直接能够去窗口办理
  2. 后面又来了三个顾客,因为corePool已经被顾客占用了,因此只有去候客区,也就是阻塞队列中等待
  3. 后面的人又陆陆续续来了,候客区可能不够用了,因此需要申请增加处理请求的窗口,这里的窗口指的是线程池中的线程数,以此来解决线程不够用的问题
  4. 假设受理窗口已经达到最大数,并且请求数还是不断递增,此时候客区和线程池都已经满了,为了防止大量请求冲垮线程池,已经需要开启拒绝策略
  5. 临时增加的线程会因为超过了最大存活时间,就会销毁,最后从最大数削减到核心数

拒绝策略

等待队列也已经排满了,再也塞不下新任务了; 同时,线程池中的max线程也达到了,无法继续为新任务服务。这时候我们就需要拒绝策略机制合理的处理这个问题。

以下所有拒绝策略都实现了RejectedExecutionHandler接口:

  • AbortPolicy:默认,直接抛出RejectedExcutionException异常,阻止系统正常运行
  • DiscardPolicy:直接丢弃任务,不予任何处理也不抛出异常,如果运行任务丢失,这是一种好方案
  • CallerRunsPolicy:该策略既不会抛弃任务,也不会抛出异常,而是将某些任务回退到调用者
  • DiscardOldestPolicy:抛弃队列中等待最久的任务,然后把当前任务加入队列中尝试再次提交当前任务

手写线程池

采用默认拒绝策略

从上面我们知道,因为默认的Executors创建的线程池,底层都是使用LinkBlockingQueue作为阻塞队列的,而LinkBlockingQueue虽然是有界的,但是它的界限是 Integer.MAX_VALUE 大概有20多亿,可以相当是无界的了,因此我们要使用ThreadPoolExecutor自己手动创建线程池,然后指定阻塞队列的大小

下面我们创建了一个 核心线程数为2,最大线程数为5,并且阻塞队列数为3的线程池

// 手写线程池
final Integer corePoolSize = 2;
final Integer maximumPoolSize = 5;
final Long keepAliveTime = 1L;

// 自定义线程池,只改变了LinkBlockingQueue的队列大小
ExecutorService executorService = new ThreadPoolExecutor(
  corePoolSize,
  maximumPoolSize,
  keepAliveTime,
  TimeUnit.SECONDS,
  new LinkedBlockingQueue<>(3),
  Executors.defaultThreadFactory(),
  new ThreadPoolExecutor.AbortPolicy());

然后使用for循环,模拟10个用户来进行请求

// 模拟10个用户来办理业务,每个用户就是一个来自外部请求线程
try {

  // 循环十次,模拟业务办理,让5个线程处理这10个请求
  for (int i = 0; i < 10; i++) {
    final int tempInt = i;
    executorService.execute(() -> {
      System.out.println(Thread.currentThread().getName() + "\t 给用户:" + tempInt + " 办理业务");
    });
  }
} catch (Exception e) {
  e.printStackTrace();
} finally {
  executorService.shutdown();
}

但是在用户执行到第九个的时候,触发了异常,程序中断

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-4	 给用户:6 办理业务
pool-1-thread-3	 给用户:5 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-2	 给用户:4 办理业务
pool-1-thread-5	 给用户:7 办理业务
pool-1-thread-4	 给用户:2 办理业务
pool-1-thread-3	 给用户:3 办理业务
java.util.concurrent.RejectedExecutionException: Task com.moxi.interview.study.thread.MyThreadPoolDemo$$Lambda$1/1747585824@4dd8dc3 rejected from java.util.concurrent.ThreadPoolExecutor@6d03e736[Running, pool size = 5, active threads = 3, queued tasks = 0, completed tasks = 5]
	at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2047)
	at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:823)
	at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1369)
	at com.moxi.interview.study.thread.MyThreadPoolDemo.main(MyThreadPoolDemo.java:34)

这是因为触发了拒绝策略,而我们设置的拒绝策略是默认的AbortPolicy,也就是抛异常的

触发条件是,请求的线程大于 阻塞队列大小 + 最大线程数 = 8 的时候,也就是说第9个线程来获取线程池中的线程时,就会抛出异常从而报错退出。

采用CallerRunsPolicy拒绝策略

当我们更好其它的拒绝策略时,采用CallerRunsPolicy拒绝策略,也称为回退策略,就是把任务丢回原来的请求开启线程着,我们看运行结果

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-5	 给用户:7 办理业务
pool-1-thread-4	 给用户:6 办理业务
main	 给用户:8 办理业务
pool-1-thread-3	 给用户:5 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-3	 给用户:9 办理业务
pool-1-thread-4	 给用户:4 办理业务
pool-1-thread-5	 给用户:3 办理业务
pool-1-thread-1	 给用户:2 办理业务

我们发现,输出的结果里面出现了main线程,因为线程池出发了拒绝策略,把任务回退到main线程,然后main线程对任务进行处理

采用 DiscardPolicy 拒绝策略

采用DiscardPolicy拒绝策略会,线程池会自动把后面的任务都直接丢弃,也不报异常,当任务无关紧要的时候,可以采用这个方式

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-3	 给用户:5 办理业务
pool-1-thread-1	 给用户:2 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-1	 给用户:4 办理业务
pool-1-thread-5	 给用户:7 办理业务
pool-1-thread-4	 给用户:6 办理业务
pool-1-thread-3	 给用户:3 办理业务

采用DiscardOldestPolicy拒绝策略

这个策略和刚刚差不多,会把最久的队列中的任务替换掉

pool-1-thread-1	 给用户:0 办理业务
pool-1-thread-4	 给用户:6 办理业务
pool-1-thread-1	 给用户:4 办理业务
pool-1-thread-3	 给用户:5 办理业务
pool-1-thread-2	 给用户:1 办理业务
pool-1-thread-1	 给用户:9 办理业务
pool-1-thread-4	 给用户:8 办理业务
pool-1-thread-5	 给用户:7 办理业务

为什么不用默认创建的线程池? 🤔

线程池创建的方法有:固定数的,单一的,可变的,那么在实际开发中,应该使用哪个?

我们一个都不用,在生产环境中是使用自己自定义的

为什么不用Executors中JDK提供的?

⭐️ 根据阿里巴巴手册:并发控制这章

  • 线程资源必须通过线程池提供,不允许在应用中自行显式创建线程
    • 使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源的开销,解决资源不足的问题,如果不使用线程池,有可能造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题
  • 线程池不允许使用Executors去创建,而是通过ThreadToolExecutors的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险
    • Executors返回的线程池对象弊端如下:
      • FixedThreadPool和SingleThreadPool:
        • 运行的请求队列长度为:Integer.MAX_VALUE,可能会堆积大量的请求,从而导致OOM
      • CacheThreadPool和ScheduledThreadPool
        • 运行的请求队列长度为:Integer.MAX_VALUE,可能会堆积大量的请求,从而导致OOM

image-20201213163542591

线程池的参数如何合理配置

生产环境中如何配置 corePoolSize 和 maximumPoolSize

这个是根据具体业务来配置的,分为CPU密集型和IO密集型

如何获得CPU核数:Runtime.getRuntime().availableProcessors()

CPU密集型

CPU密集的意思是该任务需要大量的运算,而没有阻塞,CPU一直全速运行

CPU密集任务只有在真正的多核CPU上才可能得到加速(通过多线程)

而在单核CPU上,无论你开几个模拟的多线程该任务都不可能得到加速,因为CPU总的运算能力就那些

CPU密集型任务配置尽可能少的线程数量:

一般公式:CPU核数 + 1个线程数

IO密集型

方式一:由于IO密集型任务线程并不是一直在执行任务,则可能多的线程,如CPU核数 * 2

方式二:

IO密集型,即该任务需要大量的IO操作,即大量的阻塞

在单线程上运行IO密集型的任务会导致浪费大量的CPU运算能力花费在等待上

所以IO密集型任务中使用多线程可以大大的加速程序的运行,即使在单核CPU上,这种加速主要就是利用了被浪费掉的阻塞时间。

IO密集时,大部分线程都被阻塞,故需要多配置线程数:

参考公式:CPU核数 / (1 - 阻塞系数) 阻塞系数在0.8 ~ 0.9左右

例如:8核CPU:8/ (1 - 0.9) = 80个线程数